首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Three-dimensional positioning of genes in mouse cell nuclei
Authors:Claudia Hepperger  Alexander Mannes  Julia Merz  Jürgen Peters  Steffen Dietzel
Institution:1.Department Biologie II,Ludwig-Maximilians-Universit?t München,Planegg-Martinsried,Germany;2.Walter-Brendel-Zentrum für experimentelle Medizin,Ludwig-Maximilians-Universit?t München,Munich,Germany
Abstract:To understand the regulation of the genome, it is necessary to understand its three-dimensional organization in the nucleus. We investigated the positioning of eight gene loci on four different chromosomes, including the β-globin gene, in mouse embryonic stem cells and in in vitro differentiated macrophages by fluorescence in situ hybridization on structurally preserved nuclei, confocal microscopy, and 3D quantitative image analysis. We found that gene loci on the same chromosome can significantly differ from each other and from their chromosome territory in their average radial nuclear position. Radial distribution of a given gene locus can change significantly between cell types, excluding the possibility that positioning is determined solely by the DNA sequence. For the set of investigated gene loci, we found no relationship between radial distribution and local gene density, as it was described for human cell nuclei. We did find, however, correlation with other genomic properties such as GC content and certain repetitive elements such as long terminal repeats or long interspersed nuclear elements. Our results suggest that gene density itself is not a driving force in nuclear positioning. Instead, we propose that other genomic properties play a role in determining nuclear chromatin distribution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号