首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature sensitivity of Antarctic soil-humic substance degradation by cold-adapted bacteria
Authors:Dockyu Kim  Ha Ju Park  Mincheol Kim  Seulah Lee  Soon Gyu Hong  Eungbin Kim  Hyoungseok Lee
Affiliation:1. Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990 Republic of Korea;2. Department of Systems Biology, Yonsei University, Seoul, 03722 Republic of Korea
Abstract:Heteropolymer humic substances (HS) are the largest constituents of soil organic matter and are key components that affect plant and microbial growth in maritime Antarctic tundra. We investigated HS decomposition in Antarctic tundra soils from distinct sites by incubating samples at 5°C or 8°C (within a natural soil thawing temperature range of −3.8°C to 9.6°C) for 90 days (average Antarctic summer period). This continuous 3-month artificial incubation maintained a higher total soil temperature than that in natural conditions. The long-term warming effects rapidly decreased HS content during the initial incubation, with no significant difference between 5°C and 8°C. In the presence of Antarctic tundra soil heterogeneity, the relative abundance of Proteobacteria (one of the major bacterial phyla in cold soil environments) increased during HS decomposition, which was more significant at 8°C than at 5°C. Contrasting this, the relative abundance of Actinobacteria (another major group) did not exhibit any significant variation. This microcosm study indicates that higher temperatures or prolonged thawing periods affect the relative abundance of cold-adapted bacterial communities, thereby promoting the rate of microbial HS decomposition. The resulting increase in HS-derived small metabolites will possibly accelerate warming-induced changes in the Antarctic tundra ecosystem.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号