首页 | 本学科首页   官方微博 | 高级检索  
     


Meta-analysis of diazotrophic signatures across terrestrial ecosystems at the continental scale
Authors:Chen Zhu  Ville-Petri Friman  Ling Li  Qicheng Xu  Junjie Guo  Shiwei Guo  Qirong Shen  Ning Ling
Affiliation:1. Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095 China;2. Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
Abstract:Biological nitrogen fixation performed by diazotrophs forms a cornerstone of Earth's terrestrial ecosystem productivity. However, the composition, diversity and distribution of soil diazotrophs are poorly understood across different soil ecosystems. Furthermore, the biological potential of the key diazotroph species in relation to key environmental parameters is unknown. To address this, we used meta-analysis approach to merge together 39 independent diazotroph amplicon sequencing (nifH gene) datasets consisting of 1988 independent soil samples. We then employed multiple statistical analyses and machine-learning approaches to compare diazotroph community differences and indicator species between terrestrial ecosystems on a global scale. The distribution, composition and structure of diazotroph communities varied across seven different terrestrial ecosystems, with community composition exhibiting an especially clear effect. The Cyanobacteria were the most abundant taxa in crust ecosystems (accounting for ~45% of diazotrophs), while other terrestrial ecosystems were dominated by Proteobacteria, including Alpha-, Beta- and Gamma-Proteobacteria (accounting for ~70% of diazotrophs). Farmland ecosystems harboured the highest and crust ecosystems the lowest alpha and phylogenetic diversities. Azospirillum zeae, Skermanella aerolata and four Bradyrhizobium species were identified as key indicator species of potential diazotroph activity. Overall, diazotroph abundances and distribution were affected by multiple environmental parameters, including soil pH, nitrogen, organic carbon, C:N ratio and annual mean precipitation and temperature. Together, our findings suggest that based on the relative abundance and diversity of nifH marker gene, diazotrophs have adapted to a range of environmental niches globally.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号