首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Primary hyperoxalurias: Disorders of glyoxylate detoxification
Authors:Eduardo Salido  Angel L Pey  Rosa Rodriguez  Victor Lorenzo
Institution:1. Hospital Universitario de Canarias, Universidad La Laguna, and Centre for Biomedical Research on Rare Diseases (CIBERER), Tenerife 38320, Spain;2. Departamento de Química-Física, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
Abstract:Glyoxylate detoxification is an important function of human peroxisomes. Glyoxylate is a highly reactive molecule, generated in the intermediary metabolism of glycine, hydroxyproline and glycolate mainly. Glyoxylate accumulation in the cytosol is readily transformed by lactate dehydrogenase into oxalate, a dicarboxylic acid that cannot be metabolized by mammals and forms tissue-damaging calcium oxalate crystals. Alanine-glyoxylate aminotransferase, a peroxisomal enzyme in humans, converts glyoxylate into glycine, playing a central role in glyoxylate detoxification. Cytosolic and mitochondrial glyoxylate reductase also contributes to limit oxalate production from glyoxylate. Mitochondrial hydroxyoxoglutarate aldolase is an important enzyme of hydroxyproline metabolism. Genetic defect of any of these enzymes of glyoxylate metabolism results in primary hyperoxalurias, severe human diseases in which toxic levels of oxalate are produced by the liver, resulting in progressive renal damage. Significant advances in the pathophysiology of primary hyperoxalurias have led to better diagnosis and treatment of these patients, but current treatment relies mainly on organ transplantation. It is reasonable to expect that recent advances in the understanding of the molecular mechanisms of disease will result into better targeted therapeutic options in the future. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号