首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering
Authors:Theagarten Lingham-Soliar  Richard H C Bonser  James Wesley-Smith
Institution:1.Biological and Conservation Sciences, P. Bag X54001, Durban 4000, South Africa;2.EM Unit, University of KwaZulu-Natal, P. Bag X54001, Durban 4000, South Africa;3.School of Construction Management and Engineering, University of Reading, Reading, UK
Abstract:Flight necessitates that the feather rachis is extremely tough and light. Yet, the crucial filamentous hierarchy of the rachis is unknown—study hindered by the tight chemical bonding between the filaments and matrix. We used novel microbial biodegradation to delineate the fibres of the rachidial cortex in situ. It revealed the thickest keratin filaments known to date (factor >10), approximately 6 µm thick, extending predominantly axially but with a small outer circumferential component. Near-periodic thickened nodes of the fibres are staggered with those in adjacent fibres in two- and three-dimensional planes, creating a fibre–matrix texture with high attributes for crack stopping and resistance to transverse cutting. Close association of the fibre layer with the underlying ‘spongy’ medulloid pith indicates the potential for higher buckling loads and greater elastic recoil. Strikingly, the fibres are similar in dimensions and form to the free filaments of the feather vane and plumulaceous and embryonic down, the syncitial barbules, but, identified for the first time in 140+ years of study in a new location—as a major structural component of the rachis. Early in feather evolution, syncitial barbules were consolidated in a robust central rachis, definitively characterizing the avian lineage of keratin.
Keywords:feather rachis  matrix biodegradation  fibres/syncitial barbules  biomechanics  evolution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号