PicoNewton-millisecond force steps reveal the transition kinetics and mechanism of the double-stranded DNA elongation |
| |
Authors: | Bianco Pasquale Bongini Lorenzo Melli Luca Dolfi Mario Lombardi Vincenzo |
| |
Affiliation: | †Laboratorio di Fisiologia, Dipartimento di Biologia Evoluzionistica, Università degli Studi di Firenze, Sesto Fiorentino, Italy;‡Departamento de Fisica Fundamental, Universitat de Barcelona, Barcelona, Spain |
| |
Abstract: | We study the kinetics of the overstretching transition in λ-phage double-stranded (ds) DNA from the basic conformation (B state) to the 1.7-times longer and partially unwound conformation (S state), using the dual-laser optical tweezers under force-clamp conditions at 25°C. The unprecedented resolution of our piezo servo-system, which can impose millisecond force steps of 0.5–2 pN, reveals the exponential character of the elongation kinetics and allows us to test the two-state nature of the B-S transition mechanism. By analyzing the load-dependence of the rate constant of the elongation, we find that the elementary elongation step is 5.85 nm, indicating a cooperativity of ∼25 basepairs. This mechanism increases the free energy for the elementary reaction to ∼94 kBT, accounting for the stability of the basic conformation of DNA, and explains why ds-DNA can remain in equilibrium as it overstretches. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|