首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth performance and metabolic response of juvenile grouper Epinephelus moara (Temminck & Schlegel, 1842) fed low dietary protein and high lipid levels
Authors:S M Peng  C J Zhang  Q X Gao  Z H Shi  C Chen  J G Wang
Institution:1. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China;2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China;3. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
Abstract:Nine test diets were formulated at three low levels of crude protein (P; 35%, 40% or 45%) and three high levels of crude lipid (L; 9%, 12% or 15%) to investigate whether Epinephelus moara differs in the nutrient requirements from any of the other closely‐related grouper species, and if there are any indications that a further decrease in protein with increasing dietary lipid would induce a higher protein‐sparing effect. Fish (20.34 ± 0.82 g/ind) were distributed among 27 experimental cages (100 cm diameter, 80 cm depth), with 20 fish per cage and three replicates for each test diet. The experiment was conducted over an 8‐week period at a temperature of 23.9–25.7°C. Weight gain and specific growth rate (SGR) tended to increase either with an increase in dietary protein level (at the same lipid level) or with the increase in dietary lipid level (at the same protein level, except at the 45% protein level). The highest weight gain and SGR occurred in fish fed the diet P45/L12. The serum cholesterol, high‐density lipoprotein‐cholesterol (HDL‐C) and low‐density lipoprotein‐cholesterol (LDL‐C) contents in fish were significantly increased as the dietary lipid increased. The increase of dietary protein significantly decreased the activities of serum and hepatic alanine aminotransferase (ALT) as well as aspartate aminotransferase (AST). Hepatic fatty acid synthase (FAS) activity significantly increased with the decrease of dietary protein and lipid levels (< .05). However, lipoprotein lipase (LPL) activity showed an inverse trend compared to FAS. Hepatic glutamate dehydrogenase (GDH) activity significantly increased with the increase in the dietary protein level. In conclusion, the results reveal that growth performance and metabolic responses of E. moara are dependent on dietary protein and lipid levels, and that protein‐sparing action can be induced by increasing the dietary lipid. To support the feeding and growth of juvenile E. moara under the present conditions, 45% protein and 12% lipid are adequate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号