首页 | 本学科首页   官方微博 | 高级检索  
     


Bacterial Community Structure in a Semi-Arid Haloalkaline Soil Using Culture Independent Method
Authors:Jitendra Keshri  Kalpana Mody  Bhavanath Jha
Affiliation:Discipline of Marine Biotechnology and Ecology , CSIR-Central Salt and Marine Chemicals Research Institute , Bhavnagar , Gujarat , India
Abstract:Bacterial community structures in two physicochemically different soils from the coastal region of Gujarat, India were investigated using PCR, 16S rRNA gene clone libraries and sequencing methods. The aim of the study was to determine the diversity of bacterial communities inhabiting haloalkaline soil from a semi-arid coastal region. The phylogenetic diversity of bacteria in a haloalkaline soil (EC 20 dS/m; pH 9.5) was compared with a normal soil (EC 0.93 dS/m; pH 7.2). Clones representing phyla Proteobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Actinobacteria, Acidobacteria and Planctomycetes were found in both soils. Cyanobacteria, Verrucomicrobia, OP10 and Bacteria incertae sedis were detected in normal soil whereas Nitrospira was found only in haloalkaline soil. The dominant phylum in the haloalkaline soil was Bacteroidetes followed by Proteobacteria whereas normal soil was dominated by Proteobacteria and Actinobacteria. About 82% of the sequences from the haloalkaline library were related to those previously retrieved from various saline, alkaline and oil-natural gas field ecosystems whereas 50% of the sequences from normal soil resembled sequences of bacteria retrieved from agriculture-related habitats viz. agriculture fields, rhizosphere and grasslands. One third of the total sequences from both soil samples showed low BLAST identities (<95%) suggesting that these soils may harbor unique, novel taxa. Further, the correlation analysis revealed negative correlations of Shannon diversity indices and species evenness with salinity (EC) and pH but positive correlations with total carbon and total nitrogen contents of the soil samples. The haloalkaline soil exhibited less bacterial diversity and communities were significantly different from those of normal soil. In this study, the haloalkaline soil from a semi-arid region supports oligotrophic microbes.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.
Keywords:16S rRNA  bacterial diversity  coastal haloalkaline soil  clone library  community structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号