首页 | 本学科首页   官方微博 | 高级检索  
     


HDL modification by secretory phospholipase A(2) promotes scavenger receptor class B type I interaction and accelerates HDL catabolism
Authors:de Beer F C  Connell P M  Yu J  de Beer M C  Webb N R  van der Westhuyzen D R
Affiliation:Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
Abstract:During inflammatory states plasma levels of high density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apoA-I) are reduced. Secretory group IIa phospholipase A(2) (sPLA(2)) is a cytokine-induced acute-phase enzyme associated with HDL. Transgenic mice overexpressing sPLA(2) have reduced HDL levels. Studies were performed to define the mechanism for the HDL reduction in these mice. HDL isolated from sPLA(2) transgenic mice have a significantly lower phospholipid content and greater triglyceride content. In autologous clearance studies, (125)I-labeled HDL from sPLA(2) transgenic mice was catabolized significantly faster than HDL from control mice (4.24 +/- 1.16 vs. 2.84 +/- 0.1 pools per day, P < 0.008). In both sPLA(2) transgenic and control mice, the cholesteryl ester component of HDL was more rapidly catabolized than the protein component, indicating a selective uptake mechanism. In vitro studies using CHO cells transfected with scavenger receptor class B type I (SR-BI) showed that sPLA(2)-modified HDL was nearly twice as efficient as a substrate for cholesteryl ester transfer. These data were confirmed in in vivo selective uptake experiments using adenoviral vector overexpression of SR-BI. In these studies, increased hepatic selective uptake was associated with increased (125)I-labeled apolipoprotein uptake in the kidney.We conclude that during inflammation sPLA(2) hydrolysis of HDL phospholipids alters the lipid composition of the particle, allowing for more efficient SR-BI-mediated selective cholesteryl ester uptake. This enhanced SR-BI activity generates HDL remnants that are preferentially catabolized in the kidney.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号