首页 | 本学科首页   官方微博 | 高级检索  
     


Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue
Authors:Malinowski  Dariusz P.  Alloush  Ghiath A.  Belesky  David P.
Affiliation:(1) Appalachian Farming Systems Research Center, USDA-ARS, Beaver, West Virginia 25813-9423, USA;(2) Present address: Texas Agriculture Experiment Station, Texas A&M University, Vernon, TX 76385-1658, USA;(3) Department of Soil Science and Plant Nutrition, Tishreen University, Lattakia, Syria;(4) Appalachian Farming Systems Research Center, USDA-ARS, Beaver, West Virginia 25813-9423, USA
Abstract:Neotyphodium coenophialum (Morgan-Jones and Gams) Glenn, Bacon and Hanlin, a fungal endophyte found primarily in shoots of tall fescue (Festuca arundinacea Shreb.), can modify rhizosphere activity in response to phosphorus (P) deficiency. In a controlled environment experiment, two cloned tall fescue genotypes (DN2 and DN4) free (E-) and infected (E+) with their naturally occurring endophyte strains were grown in nutrient solutions at low P (3.1 ppm) or high P (31 ppm) concentrations for 21 d. Endophyte infection increased root dry matter (DM) of DN4 by 21% but did not affect root DM of DN2. Under P deficiency, shoot and total DM were not affected by endophyte but relative growth rate was greater in E+ than E- plants. In high P nutrient solution, E+ plants produced 13% less (DN2) or 29% more (DN4) shoot DM than E- plants. Endophyte affected mineral concentrations in roots more than in shoots. Regardless of P concentration in nutrient solution, E+ DN2 accumulated more P, Ca, Zn and Cu but less K in roots than E- plants. When grown in high P nutrient solution, concentrations of Fe and B in roots of E+ DN2 plants were reduced compared with those of E- plants. Concentrations of P, Ca and Cu in roots of DN4 were less, but K was greater in E+ than E- plants. In shoots, E+ DN2 had greater concentrations of Fe and Cu than E- DN2, regardless of P concentration in nutrient solution. Genotype DN4 responded to endophyte infection by reducing B concentration in shoots. Nutrient uptake rates were affected by endophyte infection in plants grown in low P nutrient solution. A greater uptake rate of most nutrients and their transport to shoots was observed in DN2, but responses of DN4 were not consistent. Results suggest that endophyte may elicit different modes of tall fescue adaptation to P deficiency. This revised version was published online in June 2006 with corrections to the Cover Date.
Keywords:endophyte  mineral nutrition   Neotyphodium coenophialum   phosphorus  tall fescue
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号