首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Testing reliability of short-term responses to predict longer-term responses of bryophytes and lichens to environmental change
Institution:1. Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany;2. Plant Ecology and Systematics, University of Kaiserslautern, P.O. Box 3049, 67663 Kaiserslautern, Germany
Abstract:Environmental changes are predicted to have severe and rapid impacts on polar and alpine regions. At high latitudes/altitudes, cryptogams such as bryophytes and lichens are of great importance in terms of biomass, carbon/nutrient cycling, cover and ecosystem functioning. This seven-year factorial experiment examined the effects of fertilizing and experimental warming on bryophyte and lichen abundance in an alpine meadow and a heath community in subarctic Sweden. The aim was to determine whether short-term responses (five years) are good predictors of longer-term responses (seven years). Fertilizing and warming had significant negative effects on total and relative abundance of bryophytes and lichens, with the largest and most rapid decline caused by fertilizing and combined fertilizing and warming. Bryophytes decreased most in the alpine meadow community, which was bryophyte-dominated, and lichens decreased most in the heath community, which was lichen-dominated. This was surprising, as the most diverse group in each community was expected to be most resistant to perturbation. Warming alone had a delayed negative impact. Of the 16 species included in statistical analyses, seven were significantly negatively affected. Overall, the impacts of simulated warming on bryophytes and lichens as a whole and on individual species differed in time and magnitude between treatments and plant communities (meadow and heath). This will likely cause changes in the dominance structures over time. These results underscore the importance of longer-term studies to improve the quality of data used in climate change models, as models based on short-term data are poor predictors of long-term responses of bryophytes and lichens.
Keywords:Climate change  Cryptogams  Fertilizing  Mosses  Warming
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号