首页 | 本学科首页   官方微博 | 高级检索  
     


Extinction debt and the role of static and dynamical fragmentation on biodiversity
Affiliation:1. Insect Biosystematics Laboratory, Research Institute of Agriculture and Life Science, Department of Agricultural Biotechnology, Seoul National University, 151-921, Republic of Korea;2. Muséum national d''Histoire naturelle, UMR7179 CNRS/MNHN, CP50, 57 rue Cuvier, 75005 Paris, France
Abstract:The mass-extinction events caused by human-driven habitat loss are a current concern in conservation science. However, the observed number of extinctions is considerably smaller than predicted. The overestimation of extinction rates comes from the time-delay which depends on the species sensitivity to habitat changes. The standard method of predicting the effect of habitat loss on biodiversity is to use the species–area relationship and progressively following it backwards to smaller areas. The difference between the actual number of species and the one provided by the backwards species–area relationship is dubbed extinction debt. Previous studies in general adopt a static view for the spatial distribution of species. Nonetheless, a precise understanding of the problem urges us to adopt a dynamic framework to this issue since the time between disturbances of the landscape plays an active role in influencing the strength of the extinction debt. In this context, here we address two distinct approaches for this question: a static and a dynamic view of fragmentation. In the former we quantify the extinction debt in a quenched spatial distribution of species, whereas in the latter the community is let to evolve between disturbance events of the landscape. Here we show that the size of the extinction debt depends on the pattern of the fragmentation. It is found that random distributions of destroyed habitats provide larger extinction debts than those obtained for contiguous areas of fragmentation. Furthermore, in the dynamic approach it is observed that dispersal can lead to unexpected outcomes such as lower biodiversity levels than ones inferred from the backwards species–area relationship.
Keywords:Landscape ecology  Fragmentation  Neutral theory  Fractal landscapes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号