首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins
Authors:K R Williams  E K Spicer  M B LoPresti  R A Guggenheimer  J W Chase
Abstract:Limited proteolysis can be used to remove either 42 or 62 amino acids at the COOH terminus of the 18,873-dalton Escherichia coli single-stranded DNA binding protein (SSB). Since poly(dT), but not d(pT)16, increases the rate of this reaction, it appears that cooperative SSB binding to single-stranded DNA (ssDNA) is associated with a conformational change that increases the exposure of the COOH terminus to proteolysis. As a result of this DNA-induced conformational change, we presume that the COOH-terminal region of SSB will become more accessible for interacting with other proteins that utilize the SSB:ssDNA complex as a substrate and that are involved in E. coli DNA replication, repair, and recombination. Removal of this COOH-terminal domain from SSB results in a stronger helix-destabilizing protein which suggests this region may be important for controlling the ability of SSB to denature double-stranded DNA. Since similar results have previously been reported for the bacteriophage T4 gene 32 protein (Williams, K.R., and Konigsberg, W. (1978) J. Biol. Chem. 253, 2463-2470; Hosoda, J., and Moise, H. (1978) J. Biol. Chem. 253, 7547-7555), the acidic, COOH-terminal domains of these two single-stranded DNA binding proteins may be functionally homologous. Preliminary evidence is cited that suggests other prokaryotic and eukaryotic DNA binding proteins may contain similar functional domains essential for controlling their ability to invade double helical DNA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号