首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Brief communication: comparing loading scenarios in lower first molar supporting bone structure using 3D finite element analysis
Authors:Benazzi Stefano  Kullmer Ottmar  Grosse Ian R  Weber Gerhard W
Institution:Department of Anthropology, University of Vienna, Austria. stefano.benazzi@univie.ac.at
Abstract:Finite element analysis (FEA) is a widespread technique to evaluate the stress/strain distributions in teeth or dental supporting tissues. However, in most studies occlusal forces are usually simplified using a single vector (i.e., point load) either parallel to the long tooth axis or oblique to this axis. In this pilot study we show how lower first molar occlusal information can be used to investigate the stress distribution with 3D FEA in the supporting bone structure. The LM1 and the LP2‐LM1 of a dried modern human skull were scanned by μCT in maximum intercuspation contact. A kinematic analysis of the surface contacts between LM1 and LP2‐LM1 during the power stroke was carried out in the occlusal fingerprint analyzer (OFA) software to visualize contact areas during maximum intercuspation contact. This information was used for setting the occlusal molar loading to evaluate the stress distribution in the supporting bone structure using FEA. The output was compared to that obtained when a point force parallel to the long axis of the tooth was loaded in the occlusal basin. For the point load case, our results indicate that the buccal and lingual cortical plates do not experience notable stresses. However, when the occlusal contact areas are considered, the disto‐lingual superior third of the mandible experiences high tensile stresses, while the medio‐lingual cortical bone is subjected to high compressive stresses. Developing a more realistic loading scenario leads to better models to understand the relationship between masticatory function and mandibular shape and structures. Am J Phys Anthropol, 2012. © 2011 Wiley Periodicals, Inc.
Keywords:mandible  biomechanics  loading conditions  three‐dimensional finite‐element analysis (3D FEA)  occlusal fingerprint analyzer (OFA)
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号