首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling
Authors:Wen Jing Yang  Koon-Gee Neoh  En-Tang Kang  Serina Siew Chen Lee  Serena Lay-Ming Teo  Daniel Rittschof
Institution:a Department of Chemical & Biomolecular Engineering , National University of Singapore , Kent Ridge , Singapore , 119260 , Singapore.
Abstract:Dense and uniform polymer brush coatings were developed to combat marine biofouling. Nonionic hydrophilic, nonionic hydrophobic, cationic, anionic and zwitterionic polymer brush coatings were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-hydroxyethyl methacrylate, 2,3,4,5,6-pentafluorostyrene, 2-(methacryloyloxy)ethyl trimethylammonium chloride, 4-styrenesulfonic acid sodium and N,N'-dimethyl-(methylmethacryloyl ethyl) ammonium propanesulfonate, respectively. The functionalized surfaces had different efficacies in preventing adsorption of bovine serum albumin (BSA), adhesion of the Gram-negative bacterium Pseudomonas sp. NCIMB 2021 and the Gram-positive Staphylococcus aureus, and settlement of cyprids of the barnacle Amphibalanus amphitrite (=Balanus amphitrite). The nonionic hydrophilic, anionic and zwitterionic polymer brushes resisted BSA adsorption during a 2?h exposure period. The nonionic hydrophilic, cationic and zwitterionic brushes exhibited resistance to bacterial fouling (24?h exposure) and cyprid settlement (24 and 48?h incubation). The hydrophobic brushes moderately reduced protein adsorption, and bacteria and cyprid settlement. The anionic brushes were least effective in preventing attachment of bacteria and barnacle cyprids. Thus, the best approach to combat biofouling involves a combination of nonionic hydrophilic and zwitterionic polymer brush coatings on material surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号