首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evaluation of surface colonization kinetics in continuous culture
Authors:James A Malone  Douglas E Caldwell
Institution:1. Department of Biology, University of New Mexico, 87131, Albuquerque, New Mexico, USA
Abstract:Two equations, describing surface colonization, were evaluated and compared using suspended glass slides in a continuous culture ofPseudomonas aeruginosa. These equations were used to determine surface growth rates from the number and distribution of cells present on the surface after incubation. One of these was the colonization equation which accounts for simultaneous attachment and growth of bacteria on surfaces: $$N = (A/\mu )e^{\mu t} - A/\mu $$ where N=number of cells on surface (cells field?1); A=attachment rate (cells field?1h?1);μ=specific growth rate (h?1); t=incubation period (h). The other was the surface growth rate equation which assumes that the number of colonies of a given size (Ci) will reach a constant value (Cmax) which is equal to A divided byμ: $$\mu = \frac{{\ln \left( {\frac{N}{{C_i }} + 1} \right)}}{t}$$ Both equations gave similar results and the time required to approximate Cmax may not be as long as was previously thought. In all cases both A andμ continuously decreased throughout the incubation period. These decreases may be due to various effects of microbial accumulation on the surface. Both equations accurately determined surface growth rates despite highly variable attachment rates. Growth rates were similar for both the liquid phase of the culture and the solid-liquid interface (0.4 h?1). Use of the surface growth rate equation is favored over the use of the colonization equation since the former does not require a computer to solve forμ and the counting procedure is simplified.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号