Cytokinin stimulation of abscission in lemon pistil explants |
| |
Authors: | Deborah L. Sipes John W. Einset |
| |
Affiliation: | 1. Department of Botany and Plant Sciences, University of California, 92521, Riverside, California, USA
|
| |
Abstract: | The stylar abscission bioassay was used to identify five stimulators of lemon (Citrus limon cv. Lisbon) abscission in pistil explants. The stimulators (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea, N6-benzyladenine, kinetin, zeatin, and N6-isopentenyladenine), which are all cytokinins, accelerated the timing of expiant abscission when they were added as supplements (100 μM) to the test medium. To study possible relationships between cytokinins, ethylene, and abscission, we measured accumulating ethylene concentrations in sealed cultures and endogenous 1 -aminocyclopropane-1-carboxylic aicd (ACC) in explants incubated on test medium plus or minus 100 μM N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron), 100 μM N6-benzyladenine (bzl6Ade), or 2 μM picloram, an inhibitor of stylar abscission. Although ethylene accumulated to similar levels in all treatments, the concentrations obtained with picloram and thidiazuron were, respectively, higher and lower than those obtained in control cultures. The accumulation of ethylene in cultures with bzl6Ade, on the other hand, was not significantly different from controls. ACC concentrations in explants remained fairly constant in all treatments during the incubations, except in explants on thidiazuron, in which case the ACC concentration declined slightly. We conclude that cytokinins can stimulateCitrus abscissionin vitro and that this stimulation is not accompanied by marked effects on either measurable ethylene or ACC concentrations. Our finding that 100 μM aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, counteracts the stimulation of abscission by bzl6Ade suggests that a minimum level of ethylene production is required for the cytokinin effect. The possibility that cytokinins affect other aspects related to ethylene, such as biosynthetic rates, metabolism, or tissue retention, is not excluded by our results. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|