首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemical lesions in copper-deficient rats caused by secondary iron deficiency. Derangement of protein synthesis and impairment of energy metabolism
Authors:Emil Weisenberg  Avraham Halbreich  and Jacob Mager
Institution:Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, P.O. Box 1172, Jerusalem, Israel
Abstract:Severe copper deficiency was induced in rats by rearing nursing dams and their offsprings on a semisynthetic diet comprising all the requisite nutrients and trace metals except copper. The copper-deprived rats exhibited growth retardation, severe anaemia, loss of caeruloplasmin, decrease of cytochrome oxidase, accumulation of salt-soluble collagen and a drastic decrease in iron in plasma and liver. Apart from these characteristic signs of deficiency, a marked inhibition of protein synthesis was found to occur both in vivo and in cell-free liver preparations. The curtailed ability to carry out endogenously coded amino acid incorporation into protein contrasted with the unimpaired poly(U)-acid-directed phenylalanine polymerization. This inhibition pattern, as well as the attendant disaggregation of the liver polyribosomes, suggested that the primary biosynthetic lesion was located at the stage of peptide-chain initiation. Concurrently with this alteration there was a pronounced depletion of the hepatic ATP content, associated with a parallel depression of mitochondrial respiration and an enhancement of ATPase activity. Supplementation of the copper-deficient diet with a 2–4-fold excess of iron (relative to the standard diet) prevented growth retardation and anaemia and restored normal energy metabolism, as well as unimpaired protein-synthesizing capacity. The conclusion that these disturbances were primarily determined by the secondary iron deficiency was also borne out by the finding that similar alterations occurred in rats maintained on a copper-sufficient but iron-deficient diet. On the other hand, the iron-fortified diet failed to reverse the other signs of copper deficiency, namely the loss of caeruloplasmin, the diminished rate of cytochrome oxidase and the increase of soluble collagen. The interrelations between the various biochemical lesions induced by deprivation of copper or iron are discussed and the possible role of ATP depletion in determining the derangement of protein synthesis is considered.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号