首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of dendritic cell function and T cell priming by the fatty acid-binding protein AP2
Authors:Rolph Michael S  Young Timothy R  Shum Bennett O V  Gorgun Cem Z  Schmitz-Peiffer Carsten  Ramshaw Ian A  Hotamisligil Gökhan S  Mackay Charles R
Institution:Immunology and Inflammation Research Program, Garvan Institute for Medical Research, Darlinghurst, New South Wales 2010, Australia. m.rolph@garvan.org.au
Abstract:The fatty acid-binding protein (FABP) family consists of a number of conserved cytoplasmic proteins with roles in intracellular lipid transport, storage, and metabolism. Examination of a comprehensive leukocyte gene expression database revealed strong expression of the adipocyte FABP aP2 in human monocyte-derived dendritic cells (DCs). We isolated bone marrow-derived DC from aP2-deficient mice, and showed that expression of DC cytokines including IL-12 and TNF was significantly impaired in these cells. Degradation of IkappaBalpha was also impaired in aP2-deficient DCs, indicative of reduced signaling through the IkappaB kinase-NF-kappaB pathway. The cytokine defect was selective because there was no effect on Ag uptake or expression of MHC class II, CD40, CD80, or CD86. In an MLR, aP2-deficient DCs stimulated markedly lower T cell proliferation and cytokine production than did wild-type DCs. Moreover, aP2-deficient mice immunized with keyhole limpet hemocyanin/CFA showed reduced production of IFN-gamma by restimulated draining lymph node cells, suggesting a similar defect in DC function in vivo. Similarly, infection of aP2-deficient mice with the natural mouse pathogen ectromelia virus resulted in substantially lower production of IFN-gamma by CD8+ T cells. Thus, FABP aP2 plays an important role in DC function and T cell priming, and provides an additional link between metabolic processes and the regulation of immune responses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号