首页 | 本学科首页   官方微博 | 高级检索  
   检索      


H2O2 induces abnormal tail flexure in Xenopus embryos: similarities with Paraquat teratogenic effects
Authors:Vismara Claudio  Bacchetta Renato  Di Muzio Andrea  Mantecca Paride  Tarca Silvia  Vailati Giovanni  Colombo Roberto
Institution:Dipartimento di Biologia, Università degli Studi di Milano, Milan, Italy. claudio.vismara@unimi.it
Abstract:BACKGROUND: As previously shown, Paraquat (PQ) treatments of Xenopus developing embryos mainly induce a characteristic developmental alteration we named "abnormal tail flexure." PQ oxidative activity has been indicated as the cause of this malformation. Since PQ evokes reactive oxygen species (ROS), among which hydroxyl radicals (OH(*)), and H(2)O(2) can be converted to (OH(*)) via Fenton reaction, we compared here the lethal and teratogenic potentials of both oxidants by using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX), in order to grasp eventual similarities in their teratogenic activity. METHODS: Xenopus embryos were exposed, from stage 8 to stage 47, at 368, 491, 612, and 735 microM H(2)O(2) and 0.388 microM PQ. The probit analysis of H(2)O(2) mortality and malformed larva percents gave a 598.82 microM Lethal Concentration 50% (LC(50)) and 536.04 microM Teratogenic Concentration 50% (TC(50)) from which a 1.11 Teratogenic Index (T.I.) has been calculated. This T.I. value should allow the classification of H(2)O(2) as a non-teratogenic compound. RESULTS: A comparison of H(2)O(2) mortality and malformed larva percents with those obtained from PQ exposure showed the higher embryotoxicity of PQ, but, markedly, both compounds mainly induced the "abnormal tail flexure." Histological analysis of both H(2)O(2) and PQ malformed embryo tails showed a similar distorted morphology of both somites and myocytes. Some of muscle cells were necrotic and affected by an apical enlargement as well as a detachment from the connective tissue of intersomitic boundaries. CONCLUSIONS: In our opinion, both of the tested chemicals likely weaken the mechanical bridge connecting the myocyte contractile apparatus to the extracellular matrix, therefore causing the detachment of some of tail myocytes from their connectival septum as well as their apical enlargement. This could lead to the unbalance of tail tensional forces and, in turn, to the appearance of the "abnormal tail flexure."
Keywords:FETAX  hydrogen peroxide  Paraquat  tail malformation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号