首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Efferent activity in theOctopus statocyst nerves
Authors:R Williamson
Institution:(1) Zoologisches Institut, Universität Regensburg, D-8400 Regensburg, Federal Republic of Germany;(2) Present address: Physiology Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
Abstract:Summary Single unit electrophysiological recordings were obtained from efferent fibres in the statocyst nerves ofOctopus vulgaris. A preparation comprising the CNS and a single statocyst was employed. 42% of the efferents displayed a level of resting activity; transient changes in this activity occurred at irregular intervals.The responses of the efferent units were examined during sinusoidal oscillations of the statocyst at stimulus frequencies between 0.01–1 Hz, and amplitudes up to 35°. 84% of the units showed activity synchronised with the imposed oscillations; the time taken to establish this response varied for different units (Fig. 1).The lowest stimulus frequency at which a unit could be entrained varied for different units, with those units with a resting level of activity having the lowest thresholds. The peak firing frequency of the efferents was found to increase with increasing stimulus frequency or amplitude (Fig. 3). However, the change in firing frequency was much smaller than that reported for the statocyst afferents to similar stimuli.The efferent units of the posterior crista nerve were found to respond to clockwise or anticlockwise rotations (Fig. 4), with the individual units having unipolar responses. The phase response of the units changed little with increasing stimulus amplitude but an increase in phase lag occurred with an increase in the stimulus frequency (Fig. 5). The form of this relationship (Fig. 6) was similar to that reported for the statocyst crista afferents.The principal source of the input to the efferents in these experiments was shown to be afferents from the contralateral statocyst. These results are discussed and compared with data from the vertebrate semicircular canal system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号