首页 | 本学科首页   官方微博 | 高级检索  
     


Hymenolepis diminuta: Partial characterization of the membrane-bound and solubilized alkaline phosphohydrolase activities of the isolated brush border plasma membrane
Authors:Peter W. Pappas
Affiliation:Department of Zoology, The Ohio State University, Columbus, Ohio 43210, U.S.A.
Abstract:The membrane-bound and solubilized (using Triton ×-100 or sodium dodecyl sulfate (SDS)) alkaline phosphohydrolase (APase) activities of the isolated brush border membrane of Hymenolepis diminuta require a divalent cation for maximum activity. Highest rates of substrate (p-nitrophenyl phosphate) hydrolysis are obtained with low concentrations of Mg2+ (1 mM), although low concentrations of Mn2+, Ca2+, or Zn2+ will also partially satisfy this requirement; higher concentrations of Mg2+ and Mn2+, and other divalent cations (Cu2+, Fe2+, and Pb2+), inhibit the membrane-bound APase activity. Solubilization of the membrane-bound enzyme in either Triton or SDS results in an increase in specific activity and Km, but has little effect on thermal stability of the APase activity. Phosphate, pyrophosphate, adenosine 5′-triphosphate, adenosine 5′-monophosphate, glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-diphosphate inhibit substrate hydrolysis, and the relative affinities of these inhibitors for the APase enzyme are altered only slightly upon solubilization. Graphic analyses of data from inhibitor studies indicate that all eight inhibitors will inhibit membrane-bound and solubilized APase activities 100% at high inhibitonsubstrate ratios. Molybdate, F?, 2-mercaptoethanol, cysteine, and p-chloromercuribenzoate inhibit membrane-bound APase activity. Inhibitor data indicate that if more than one enzyme is responsible for the APase activity of the brush border membrane of H. diminuta, the enzymes cannot be differentiated on the basis of substrate specificity.
Keywords:Cestoda  Alkaline phosphohydrolase (EC 3.1.3.1)  Membrane-bound enzymes  Brush border  Tegumentary enzymes  Solubilized enzymes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号