Nucleotide sequence analysis establishes the role of endogenous murine leukemia virus DNA segments in formation of recombinant mink cell focus-forming murine leukemia viruses. |
| |
Authors: | A S Khan |
| |
Abstract: | The sequence of 363 nucleotides near the 3' end of the pol gene and 564 nucleotides from the 5' terminus of the env gene in an endogenous murine leukemia viral (MuLV) DNA segment, cloned from AKR/J mouse DNA and designated as A-12, was obtained. For comparison, the nucleotide sequence in an analogous portion of AKR mink cell focus-forming (MCF) 247 MuLV provirus was also determined. Sequence features unique to MCF247 MuLV DNA in the 3' pol and 5' env regions were identified by comparison with nucleotide sequences in analogous regions of NFS -Th-1 xenotropic and AKR ecotropic MuLV proviruses. These included (i) an insertion of 12 base pairs encoding four amino acids located 60 base pairs from the 3' terminus of the pol gene and immediately preceding the env gene, (ii) the deletion of 12 base pairs (encoding four amino acids) and the insertion of 3 base pairs (encoding one amino acid) in the 5' portion of the env gene, and (iii) single base substitutions resulting in 2 MCF247 -specific amino acids in the 3' pol and 23 in the 5' env regions. Nucleotide sequence comparison involving the 3' pol and 5' env regions of AKR MCF247 , NFS xenotropic, and AKR ecotropic MuLV proviruses with the cloned endogenous MuLV DNA indicated that MCF247 proviral DNA sequences were conserved in the cloned endogenous MuLV proviral segment. In fact, total nucleotide sequence identity existed between the endogenous MuLV DNA and the MCF247 MuLV provirus in the 3' portion of the pol gene. In the 5' env region, only 4 of 564 nucleotides were different, resulting in three amino acid changes between AKR MCF247 MuLV DNA and the endogenous MuLV DNA present in clone A-12. In addition, nucleotide sequence comparison indicated that Moloney-and Friend-MCF MuLVs were also highly related in the 3' pol and 5' env regions to the cloned endogenous MuLV DNA. These results establish the role of endogenous MuLV DNA segments in generation of recombinant MCF viruses. |
| |
Keywords: | |
|
|