Histochemical and immunohistochemical localization of neuronal nitric oxide synthase in the olfactory epithelium of the axolotl, Ambystoma mexicanum. |
| |
Authors: | E Sánchez-Islas M León-Olea |
| |
Affiliation: | Laboratorio de Histología y Microscopía Electrónica, División de Neurociencias, Instituto Nacional de Psiquiatría, Av. México-Xochimilco No. 101, México, 14370 D.F, México. |
| |
Abstract: | The aim of this study was to describe the anatomic distribution of neuronal nitric oxide synthase immunoreactivity (nNOS-IR) and nicotinamide-adenine dinucleotide phosphate-diaphorase (NADPH-d) staining in the olfactory epithelium of the axolotl, juvenile, and neotenic adult, Ambystoma mexicanum. Nitric oxide (NO, nitrogen monoxide) is a widespread molecule that has been identified both as a neuromodulator and as an intracellular messenger. In the olfactory system, NO has been proposed to play a role in olfactory transduction. Nitric oxide synthase (NOS) can be detected by histochemical (NADPH-d) and immunohistochemical techniques. NADPH-d staining has been described in olfactory receptor neurons (ORN) of several species; however, nNOS-IR has not always been found at ORN. Present results show intense NADPH-d staining and nNOS-IR in the dendrites and cell bodies of ORN in both the nasal cavity and the vomeronasal organ of axolotls. Unilateral olfactory axotomy was conducted to confirm that labels were at ORN. Two weeks after this procedure an important decrease in NADPH-d staining and nNOS-IR was observed. The remaining labels were mostly in basal cells. By 5 weeks postaxotomy both labels were almost totally absent. Thus, both NADPH-d staining and nNOS-IR were mainly localized in ORN. NADPH-d staining and nNOS-IR were also found in nerve fibers surrounding arterioles, as well as in secretory and duct cells of the Bowman's glands. This last anatomical localization suggests that in the A. mexicanum NO might be involved in functions other than only olfactory transduction, such as regulation of local blood flow, glandular secretion, and ORN development. |
| |
Keywords: | |
|
|