首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oncogenic mutations on Rac1 affect global intrinsic dynamics underlying GTP and PAK1 binding
Authors:Saliha Ece Acuner  Fidan Sumbul  Hamdi Torun  Turkan Haliloglu
Institution:1. Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey;2. Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle, United Kingdom
Abstract:Rac1 is a small member of the Rho GTPase family. One of the most important downstream effectors of Rac1 is a serine/threonine kinase, p21-activated kinase 1 (PAK1). Mutational activation of PAK1 by Rac1 has oncogenic signaling effects. Here, although we focus on Rac1-PAK1 interaction by atomic-force-microscopy-based single-molecule force spectroscopy experiments, we explore the effect of active mutations on the intrinsic dynamics and binding interactions of Rac1 by Gaussian network model analysis and molecular dynamics simulations. We observe that Rac1 oncogenic mutations are at the hinges of three global modes of motion, suggesting the mechanical changes as potential markers of oncogenicity. Indeed, the dissociation of wild-type Rac1-PAK1 complex shows two distinct unbinding dynamic states that are reduced to one with constitutively active Q61L and oncogenic Y72C mutant Rac1, as revealed by single-molecule force spectroscopy experiments. Q61L and Y72C mutations change the mechanics of the Rac1-PAK1 complex by increasing the elasticity of the protein and slowing down the transition to the unbound state. On the other hand, Rac1’s intrinsic dynamics reveal more flexible GTP and PAK1-binding residues on switches I and II with Q61L, Y72C, oncogenic P29S and Q61R, and negative T17N mutations. The cooperativity in the fluctuations of GTP-binding sites around the p-loop and switch I decreases in all mutants, mostly in Q61L, whereas some PAK1-binding residues display enhanced coupling with GTP-binding sites in Q61L and Y72C and within each other in P29S. The predicted binding free energies of the modeled Rac1-PAK1 complexes show that the change in the dynamic behavior likely means a more favorable PAK1 interaction. Overall, these findings suggest that the active mutations affect intrinsic functional dynamic events and alter the mechanics underlying the binding of Rac1 to GTP and upstream and downstream partners including PAK1.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号