首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional domains in presenilin 1: the Tyr-288 residue controls gamma-secretase activity and endoproteolysis
Authors:Laudon Hanna  Karlström Helena  Mathews Paul M  Farmery Mark R  Gandy Samuel E  Lundkvist Johan  Lendahl Urban  Näslund Jan
Institution:Department of Neurotec, Division of Experimental Geriatrics, Karolinska Institutet, Novum, SE-141 86 Huddinge, Sweden.
Abstract:Processing of the Alzheimer amyloid precursor protein (APP) into the amyloid beta-protein and the APP intracellular domain is a proteolysis event mediated by the gamma-secretase complex where presenilin (PS) proteins are key constituents. PS is subjected to an endoproteolytic cleavage, generating a stable heterodimer composed of an N-terminal and a C-terminal fragment. Here we aimed at further understanding the role of PS in endoproteolysis, in proteolytic processing of APP and Notch, and in assembly of the gamma-secretase complex. By using a truncation protocol and alanine scanning, we identified Tyr-288 in the PS1 N-terminal fragment as critical for PS-dependent intramembrane proteolysis. Further mutagenesis of the 288 site identified mutants differentially affecting endoproteolysis and gamma-secretase activity. The Y288F mutant was endoproteolyzed to the same extent as wild type PS but increased the amyloid beta-protein 42/40 ratio by approximately 75%. In contrast, the Y288N mutant was also endoproteolytically processed but was inactive in reconstituting gamma-secretase in PS null cells. The Y288D mutant was deficient in both endoproteolysis and gamma-secretase activity. All three mutant PS1 molecules were incorporated into gamma-secretase complexes and stabilized Pen-2 in PS null cells. Thus, mutations at Tyr-288 do not affect gamma-secretase complex assembly but can differentially control endoproteolysis and gamma-secretase activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号