首页 | 本学科首页   官方微博 | 高级检索  
     


LPS receptor subunits have antagonistic roles in epithelial apoptosis and colonic carcinogenesis
Authors:W-T Kuo  T-C Lee  H-Y Yang  C-Y Chen  Y-C Au  Y-Z Lu  L-L Wu  S-C Wei  Y-H Ni  B-R Lin  Y Chen  Y-H Tsai  J T Kung  F Sheu  L-W Lin  L C-H Yu
Abstract:Colorectal carcinoma (CRC) is characterized by unlimited proliferation and suppression of apoptosis, selective advantages for tumor survival, and chemoresistance. Lipopolysaccharide (LPS) signaling is involved in both epithelial homeostasis and tumorigenesis, but the relative roles had by LPS receptor subunits CD14 and Toll-like receptor 4 (TLR4) are poorly understood. Our study showed that normal human colonocytes were CD14+TLR4, whereas cancerous tissues were CD14+TLR4+, by immunofluorescent staining. Using a chemical-induced CRC model, increased epithelial apoptosis and decreased tumor multiplicity and sizes were observed in TLR4-mutant mice compared with wild-type (WT) mice with CD14+TLR4+ colonocytes. WT mice intracolonically administered a TLR4 antagonist displayed tumor reduction associated with enhanced apoptosis in cancerous tissues. Mucosa-associated LPS content was elevated in response to CRC induction. Epithelial apoptosis induced by LPS hypersensitivity in TLR4-mutant mice was prevented by intracolonic administration of neutralizing anti-CD14. Moreover, LPS-induced apoptosis was observed in primary colonic organoid cultures derived from TLR4 mutant but not WT murine crypts. Gene silencing of TLR4 increased cell apoptosis in WT organoids, whereas knockdown of CD14 ablated cell death in TLR4-mutant organoids. In vitro studies showed that LPS challenge caused apoptosis in Caco-2 cells (CD14+TLR4) in a CD14-, phosphatidylcholine-specific phospholipase C-, sphingomyelinase-, and protein kinase C-ζ-dependent manner. Conversely, expression of functional but not mutant TLR4 (Asp299Gly, Thr399Ile, and Pro714His) rescued cells from LPS/CD14-induced apoptosis. In summary, CD14-mediated lipid signaling induced epithelial apoptosis, whereas TLR4 antagonistically promoted cell survival and cancer development. Our findings indicate that dysfunction in the CD14/TLR4 antagonism may contribute to normal epithelial transition to carcinogenesis, and provide novel strategies for intervention against colorectal cancer.Colorectal tumorigenesis proceeds via the accumulation of genetic and epigenetic alterations that promote unlimited cell proliferation, self-sufficient growth signaling, neovascularization, tissue invasion, and resistance to cell death.1 The transformation of normal epithelium into colorectal carcinomas (CRC) is associated with the progressive inhibition of apoptosis; this confers a selective advantage for tumor cell survival and chemoresistance.2, 3 It is generally believed that sufficient epithelial apoptosis may hamper colon cancer formation in terms of incidence and growth rate.4, 5, 6 Direct evidence for this was recently reported in mice deficient in pro-apoptotic molecules.7, 8 To date, the regulatory mechanisms of physiological apoptosis to eliminate premalignant cells in the gut remain incompletely understood.Intestinal homeostasis is maintained by the dynamic, yet strictly regulated, turnover of epithelial cells. An imbalance in epithelial death versus survival/proliferative responses may lead to barrier dysfunction, chronic inflammation, and tumorigenesis.9, 10 Accumulating evidence indicates that gut microbiota and bacterial lipopolysaccharide (LPS) have critical roles in epithelial cell renewal under baseline conditions and on injury,11, 12 and are involved in the pathogenesis of colitis-associated CRC as well.13, 14, 15 Given the juxtaposition of commensal bacteria and the gut mucosa, it has been assumed that normal epithelial cells are not equipped with LPS receptor complexes (CD14/TLR4/MD2) or express altered forms of receptors and signaling molecules to achieve immunotolerance.15 Constitutive expression of CD14 was reported in the presence of negligible-to-low levels of Toll-like receptor 4 (TLR4) in normal human colonocytes,16, 17, 18 whereas strong TLR4 immunoreactivity was detected in CRC.18, 19 Nevertheless, divergent cellular responses to LPS (death versus survival) have been reported among human CRC cell lines. Several laboratories, using Caco-2 cells, have described increases in apoptotic cell death following apical LPS challenge,20, 21 whereas others have documented enhanced survival and proliferative responses of HT29 and SW480 cells to LPS.22, 23 Here we hypothesize that differing expression patterns of LPS receptor subunits on epithelial surfaces may have a determining role in cell death versus survival.CD14, as the membrane-bound subunit of LPS receptor complex and lacking a cytoplasmic tail, has traditionally been regarded as merely a binding component for transferring LPS to TLR4. TLR4 subsequently activates downstream adaptors and signaling pathways, such as myeloid differentiation factor (MyD88), mitogen-activated protein kinases (MAPKs), inhibitor of κB (IκB)/nuclear factor-κB (NFκB), and interferon regulatory factor 3 (IRF3).24, 25 Recent findings in monocytes have indicated that LPS/CD14 binding triggers a cascade of lipid messenger signals before TLR4 trafficking to lipid rafts for complex formation. CD14-dependent lipid signaling includes the conversion of membranous phosphatidylcholine (PC) to diacylglcerol by PC-specific phospholipase C (PC-PLC) and the activation of sphingomyelinase (SMase) for sphingolipid metabolism and ceramide production. This process leads to the phosphorylation of protein kinase C (PKC) ζ, which recruits TLR4 to interact with CD14 (Cuschieri et al.26 and Triantafilou et al.27). Lipid messengers, such as sphingolipids and ceramides, and their downstream PKCζ signals have been implicated in pro-apoptotic pathways and are considered tumor suppressors.28, 29, 30 Decreased SMase activity and PKCζ levels have been observed in human colorectal tumors, correlated with poor prognosis.31, 32 In contrast, the TLR4/MyD88 and IκB/NFκB pathways are associated with anti-apoptotic and hyperproliferative responses.5, 33, 34, 35 Reduced colorectal tumor formation has been documented in TLR4(−/−), MyD88(−/−), and epithelial-specific IκB kinase β-deficient mice as compared with wild-type (WT) mice.5, 19, 36 These findings led us to speculate that the expression of CD14 and TLR4 on epithelial cell surfaces may provide antagonistic signals to counteract apoptotic responses to LPS and to influence tumor progression.The aims of this study were to (1) investigate the expression patterns of LPS receptor subunits in normal and cancerous colonic epithelia in human and murine tissues; (2) examine the individual roles of CD14 and TLR4 in epithelial apoptosis and tumor formation using a mouse model of colitis-associated CRC; (3) assess the involvement of CD14-mediated lipid messengers and/or TLR4-dependent signaling in the mechanism of LPS-induced apoptosis using human carcinoma cell lines; and (4) evaluate whether TLR4 has an opposing role against CD14-mediated apoptosis to promote tumor cell survival.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号