首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Focus on Ethylene: Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress
Authors:Nguyen Phuong Thao  M Iqbal R Khan  Nguyen Binh Anh Thu  Xuan Lan Thi Hoang  Mohd Asgher  Nafees A Khan  Lam-Son Phan Tran
Institution:School of Biotechnology, International University, Vietnam National University, Ho Chi Minh 70000, Vietnam (N.P.T., N.B.A.T., X.L.T.H.);;Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India (M.I.R.K., M.A., N.A.K.); and;Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 2300045, Japan (L.-S.P.T.)
Abstract:Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance.In addition to common abiotic stresses seen in agricultural production, such as drought, submerging, and extreme temperatures (Thao and Tran, 2012; Xia et al., 2015), heavy metal (HM) stress has arisen as a new pervasive threat (Srivastava et al., 2014; Ahmad et al., 2015). This is mainly due to the unrestricted industrialization and urbanization carried out during the past few decades, which have led to the increase of HMs in soils. Plants naturally require more than 15 different types of HM as nutrients serving for biological activities in cells (Sharma and Chakraverty, 2013). However, when the nutritional/nonnutritional HMs are present in excess, plants have to either suffer or take these up from the soil in an unwilling manner (Nies, 1999; Sharma and Chakraverty, 2013). Upon HM stress exposure, plants induce oxidative stress due to the excessive production of reactive oxygen species (ROS) and methylglyoxal (Sharma and Chakraverty, 2013). High levels of these compounds have been shown to negatively affect cellular structure maintenance (e.g. induction of lipid peroxidation in the membrane, biological macromolecule deterioration, ion leakage, and DNA strand cleavage; Gill and Tuteja, 2010; Nagajyoti et al., 2010) as well as many other biochemical and physiological processes (Dugardeyn and Van Der Straeten, 2008). As a result, plant growth is retarded and, ultimately, economic yield is decreased (Yadav, 2010; Anjum et al., 2012; Hossain et al., 2012; Asgher et al., 2015). Moreover, the accumulation of metal residues in the major food chain has been shown to cause serious ecological and health problems (Malik, 2004; Verstraeten et al., 2008).Plants employ different strategies to detoxify the unwanted HMs. Among the common responses of plants to HM stress are increases in ethylene production due to the enhanced expression of ethylene-related biosynthetic genes (Asgher et al., 2014; Khan and Khan, 2014; Khan et al., 2015b) and/or changes in the expression of ethylene-responsive genes (Maksymiec, 2007). Conventionally, this hormone has been established to modulate a number of important plant physiological activities, including seed germination, root hair and root nodule formation, and maturation (fruit ripening in particular; Dugardeyn and Van Der Straeten, 2008). On the other hand, although ethylene has also been suggested to be a stress-related hormone responding to a number of biotic and abiotic triggers, little is known about the exact role of elevated HM stress-related ethylene in plants (Zapata et al., 2003). Enhanced production of ethylene in plants subjected to toxic levels of cadmium (Cd), copper (Cu), iron (Fe), nickel (Ni), and zinc (Zn) has been shown (Maksymiec, 2007). As an example, Cd- and Cu-mediated stimulation of ethylene synthesis has been reported as a result of the increase of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) activity, one of the enzymes involved in the ethylene synthesis pathway (Schlagnhaufer and Arteca, 1997; Khan et al., 2015b).Plants tend to adjust or induce adaptation or tolerance mechanisms to overcome stress conditions. To develop stress tolerance, plants trigger a network of hormonal cross talk and signaling, among which ethylene production and signaling are prominently involved in stress-induced symptoms in acclimation processes (Gazzarrini and McCourt, 2003). Therefore, the necessity of controlling ethylene homeostasis and signal transduction using biochemical and molecular tools remains open to combat stress situations. Stress-induced ethylene acts to trigger stress-related effects on plants because of the autocatalytic ethylene synthesis. Autocatalytic stress-related ethylene production is controlled by mitogen-activated protein kinase (MAPK) phosphorylation cascades (Takahashi et al., 2007) and through stabilizing ACS2/6 (Li et al., 2012). Strong lines of evidence have shown the multiple facets of ethylene in plant responses to different abiotic stresses, including excessive HM, depending upon endogenous ethylene concentration and ethylene sensitivities that differ in developmental stage, plant species, and culture systems (Pierik et al., 2006; Kim et al., 2008; Khan and Khan, 2014). Under HM stress conditions, plants show a rapid increase in ethylene production and reduced plant growth and development, suggesting a negative regulatory role of ethylene in plant responses to HM stress (Schellingen et al., 2014; Khan et al., 2015b). On the other hand, a potential involvement of ETHYLENE INSENSITIVE2 (EIN2), a central component of the ethylene signaling pathway, as a positive regulator in lead (Pb) resistance in Arabidopsis (Arabidopsis thaliana) has also been demonstrated (Cao et al., 2009). More recently, Khan and Khan (2014) showed that ethylene-regulated antioxidant metabolism maintained a higher level of reduced glutathione (GSH) and alleviated photosynthetic inhibition in mustard (Brassica juncea) plants exposed to Ni, Zn, or Cd through the optimization of ethylene homeostasis (Masood et al., 2012). Taken together, the purpose of this review is to update the research community with our current understanding of the roles of ethylene and its signaling in plant responses to HM stress. Moreover, the cross talk of ethylene with other phytohormones and signaling molecules upon HM stress will also be discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号