首页 | 本学科首页   官方微博 | 高级检索  
     


Subtle Interplay between Synaptotagmin and Complexin Binding to the SNARE Complex
Authors:Junjie Xu  Kyle D. Brewer  Raquel Perez-Castillejos  Josep Rizo
Affiliation:1 Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA;2 Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA;3 Department of Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA;4 Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
Abstract:Ca2 +-triggered neurotransmitter release depends on the formation of SNARE complexes that bring the synaptic vesicle and plasma membranes together, on the Ca2 + sensor synaptotagmin-1 and on complexins, which play active and inhibitory roles. Release of the complexin inhibitory activity by binding of synaptotagmin-1 to the SNARE complex, causing complexin displacement, was proposed to trigger exocytosis. However, the validity of this model was questioned based on the observation of simultaneous binding of complexin-I and a fragment containing the synaptotagmin-1 C2 domains (C2AB) to membrane-anchored SNARE complex. Using diverse biophysical techniques, here we show that C2AB and complexin-I do not bind to each other but can indeed bind simultaneously to the SNARE complex in solution. Hence, the SNARE complex contains separate binding sites for both proteins. However, total internal reflection fluorescence microscopy experiments show that C2AB can displace a complexin-I fragment containing its central SNARE-binding helix and an inhibitory helix (Cpx26-83) from membrane-anchored SNARE complex under equilibrium conditions. Interestingly, full-length complexin-I binds more tightly to membrane-anchored SNARE complex than Cpx26-83, and it is not displaced by C2AB. These results show that interactions of N- and/or C-terminal sequences of complexin-I with the SNARE complex and/or phospholipids increase the affinity of complexin-I for the SNARE complex, hindering dissociation induced by C2AB. We propose a model whereby binding of synaptotagmin-1 to the SNARE complex directly or indirectly causes a rearrangement of the complexin-I inhibitory helix without inducing complexin-I dissociation, thus relieving the inhibitory activity and enabling cooperation between synaptotagmin-1 and complexin-I in triggering release.
Keywords:HMQC, heteronuclear multiple quantum coherence   HSQC, heteronuclear single quantum coherence   ITC, isothermal titration calorimetry   MALS, multiangle light scattering   TCEP, tris(2-carboxyethyl)phosphine   TIRF, total internal reflection fluorescence   TROSY, transverse relaxation optimized spectroscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号