首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Structure of the Neisserial Lipooligosaccharide Phosphoethanolamine Transferase A (LptA) Required for Resistance to Polymyxin
Authors:Christopher Wanty  Anandhi Anandan  Susannah Piek  James Walshe  Jhuma Ganguly  Russell W Carlson  Keith A Stubbs  Charlene M Kahler  Alice Vrielink
Institution:1 School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;2 School of Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;3 Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
Abstract:Gram-negative bacteria possess an outer membrane envelope consisting of an outer leaflet of lipopolysaccharides, also called endotoxins, which protect the pathogen from antimicrobial peptides and have multifaceted roles in virulence. Lipopolysaccharide consists of a glycan moiety attached to lipid A, embedded in the outer membrane. Modification of the lipid A headgroups by phosphoethanolamine (PEA) or 4-amino-arabinose residues increases resistance to the cationic cyclic polypeptide antibiotic, polymyxin. Lipid A PEA transferases are members of the YhjW/YjdB/YijP superfamily and usually consist of a transmembrane domain anchoring the enzyme to the periplasmic face of the cytoplasmic membrane attached to a soluble catalytic domain. The crystal structure of the soluble domain of the protein of the lipid A PEA transferase from Neisseria meningitidis has been determined crystallographically and refined to 1.4 Å resolution. The structure reveals a core hydrolase fold similar to that of alkaline phosphatase. Loop regions in the structure differ, presumably to enable interaction with the membrane-localized substrates and to provide substrate specificity. A phosphorylated form of the putative nucleophile, Thr280, is observed. Metal ions present in the active site are coordinated to Thr280 and to residues conserved among the family of transferases. The structure reveals the protein components needed for the transferase chemistry; however, substrate-binding regions are not evident and are likely to reside in the transmembrane domain of the protein.
Keywords:LPS  lipopolysaccharide  PEA  phosphoethanolamine  LptA  lipid A phosphoethanolamine transferase  p-NPPE  para-nitrophenyl phosphoethanolamine  MALDI-TOF-MS  matrix-assisted laser/desorption time-of-flight mass spectrometry  SeMet  selenomethionine  MAD  multiple-wavelength anomalous diffraction  AlkPP  alkaline phosphatase  PDB  Protein Data Bank  EDTA  ethylenediaminetetraacetic acid  PEG  polyethylene glycol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号