首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Asymmetry in the Osmotic Response of a Rat Cortical Collecting Duct Cell Line: Role of Aquaporin-2
Authors:O?Chara  P?Ford  V?Rivarola  M?Parisi  Email author" target="_blank">C?CapurroEmail author
Institution:(1) Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Ave, Rochester, NY 14642-8711, USA;(2) Present address: Instituto de Investigaciones Medicas, Alfredo Lanari, Universidad de Buenos Aires, Laboratorio de Neurofisiologia, C. de Malvinas 3150, 1427 Buenos Aires, Argentina
Abstract:The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride (Cl) channel known to influence the function of other channels, including connexin channels. To further study potential functional interactions between CFTR and gap junction channels, we have co-expressed CFTR and connexin45 (Cx45) in Xenopus oocytes and monitored junctional conductance and voltage sensitivity by dual voltage clamp electrophysiology. In single oocytes expressing CFTR, an increase in cAMP caused by forskolin application induced a Cl current and increased membrane conductance; application of diphenylamine carboxylic acid (CFTR blocker) readily blocked the Cl current. With co-expression of CFTR and Cx45, application of forskolin to paired oocytes induced a typical outward current and increased junctional conductance (Gj). In addition, the presence of CFTR reduced the transjunctional voltage sensitivity of Cx45 channels without affecting the kinetics of junctional current inactivation. The drop in voltage sensitivity was further enhanced by forskolin application. The data indicate that CFTR influences cell-to-cell coupling mediated by Cx45 channels.
Keywords:Chloride channels  CFTR  Cell communication  Connexins  Gap junctions  Channel gating  Xenopus oocytes
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号