首页 | 本学科首页   官方微博 | 高级检索  
     


Reducing sugars can induce the oxidative inactivation of rhodanese.
Authors:P M Horowitz  M Butler  G D McClure
Affiliation:Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760.
Abstract:The enzyme rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1) is inactivated on incubation with reducing sugars such as glucose, mannose, or fructose, but is stable with non-reducing sugars or related polyhydroxy compounds. The enzyme is inactivated with (ES) or without (E) the transferable sulfur atom, although E is considerably more sensitive, and inactivation is accentuated by cyanide. Inactivation of E is accompanied by increased proteolytic susceptibility, a decreased sulfhydryl titer, a red-shift and quenching of the protein fluorescence, and the appearance of hydrophobic surfaces. Superoxide dismutase and/or catalase protect rhodanese. Inactive enzyme can be partially reactivated during assay and almost completely reactivated by incubation with thiosulfate, lauryl maltoside, and 2-mercaptoethanol. These results are similar to those observed when rhodanese is inactivated by hydrogen peroxide. These observations, as well as the cyanide-dependent, oxidative inactivation by phenylglyoxal, are explained by invoking the formation of reactive oxygen species such as superoxide or hydrogen peroxide from autooxidation of alpha-hydroxy carbonyl compounds, which can be facilitated by cyanide.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号