首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rhizosphere acidification and Fe3+ reduction in lupins and peas: Iron deficiency in lupins is not due to a poor ability to reduce Fe3+
Authors:P F White  A D Robson
Institution:(1) Soil Science and Plant Nutrition, School of Agriculture, The University of Western Australia, 6009 Nedlands, W.A., Australia
Abstract:While lupins suffer severely from Fe deficiency when grown on calcareous soils, field peas under the same conditions grow normally. This paper aimed to identify whether these differences were related to differences in either the pattern or capacity for rhizosphere acidification or Fe3+ reduction between these species. Two lupin species (Lupinus angustifolius, L. cosentinii) and field peas (Pisum sativum) were grown in solution culture for 5 weeks with both an adequate and a low supply of Fe. Plants were reliant on symbiotically fixed N. The extent of iron reduction was determined using the chelates TPTZ and BPDS. The pattern of reactions around roots was determined by placing roots in agar containing either bromocresol purple or TPTZ. The low supply of Fe decreased the growth of lupins by over 30% and induced severe chlorosis and necrosis. Growth of the peas was reduced by less than 15% and no symptoms appeared. All species acidified the solutions by about 1 pH unit regardless of the Fe treatment. The level of Fe3+ reduction was higher for all species grown with low Fe than with adequate Fe. Capacity for Fe3+ reduction was higher for all species grown with low Fe than with adequate Fe. Capacity for Fe3+ reduction was similar for all species. The pattern of acidification and reduction around roots was also similar between species. Thus it appears that the capacity of lupins to reduce Fe3+ in the rhizosphere is not the primary cause of Fe deficiency in lupins.
Keywords:Fe-stress response  field peas  cluster roots
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号