首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Controlling membrane cholesterol content. A role for polyunsaturated (docosahexaenoate) phospholipids
Authors:Brzustowicz Michael R  Cherezov Vadim  Zerouga Mustapha  Caffrey Martin  Stillwell William  Wassall Stephen R
Institution:Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202-3273, USA.
Abstract:The molecular organization of cholesterol in 1,2-didocosahexaenoylphosphatidylcholine (22:6-22:6PC) and 1-stearoyl-2-docosahexaenoylphosphatidylcholine (18:0-22:6PC) bilayers was investigated. Using low- and wide-angle X-ray diffraction (XRD), we determined that the solubility of the sterol at 20 degrees C was 11 +/- 3 mol % in 22:6-22:6PC vs 55 +/- 3 mol % in 18:0-22:6PC bilayers. Solubility in the dipolyunsaturated membrane rose to 17 +/- 3 mol % at 40 degrees C, while in the saturated-polyunsaturated membrane there was no change within experimental uncertainty. We compared the molecular orientation of 3alpha-(2)H(1)]cholesterol incorporated into 22:6-22:6PC bilayers to its solubility limit and into 18:0-22:6PC bilayers to a comparable concentration (10 mol %) in solid-state (2)H NMR experiments. The sterol possessed a tilt angle alpha(0) = 24 degrees +/- 1 degrees in 22:6-22:6PC that was independent of temperature over a range from 20 to 40 degrees C. In contrast, the value was alpha(0) = 21 degrees +/- 1 degrees in 18:0-22:6 bilayers at 20 degrees C and increased to alpha(0) = 24 degrees +/- 1 degrees at 40 degrees C. We attribute the low solubility of cholesterol in 22:6-22:6PC membranes to steric incompatibility between the rigid steroid moiety and the highly disordered docosahexaenoic acid (DHA) chain, which has the potential to promote lateral heterogeneity within DHA-rich membranes. Considering 22:6-22:6PC to be the most unsaturated phospholipid found in vivo, this model membrane study provides a point of reference for elucidating the role of sterol-lipid interactions in controlling local compositional organization. Our results form the basis for a model that is consistent with cholesterol's ability to modulate the activity of certain neural transmembrane proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号