首页 | 本学科首页   官方微博 | 高级检索  
     


NAGbinder: An approach for identifying N‐acetylglucosamine interacting residues of a protein from its primary sequence
Authors:Sumeet Patiyal  Piyush Agrawal  Vinod Kumar  Anjali Dhall  Rajesh Kumar  Gaurav Mishra  Gajendra P.S. Raghava
Abstract:N‐acetylglucosamine (NAG) belongs to the eight essential saccharides that are required to maintain the optimal health and precise functioning of systems ranging from bacteria to human. In the present study, we have developed a method, NAGbinder, which predicts the NAG‐interacting residues in a protein from its primary sequence information. We extracted 231 NAG‐interacting nonredundant protein chains from Protein Data Bank, where no two sequences share more than 40% sequence identity. All prediction models were trained, validated, and evaluated on these 231 protein chains. At first, prediction models were developed on balanced data consisting of 1,335 NAG‐interacting and noninteracting residues, using various window size. The model developed by implementing Random Forest using binary profiles as the main principle for identifying NAG‐interacting residue with window size 9, performed best among other models. It achieved highest Matthews Correlation Coefficient (MCC) of 0.31 and 0.25, and Area Under Receiver Operating Curve (AUROC) of 0.73 and 0.70 on training and validation data set, respectively. We also developed prediction models on realistic data set (1,335 NAG‐interacting and 47,198 noninteracting residues) using the same principle, where the model achieved MCC of 0.26 and 0.27, and AUROC of 0.70 and 0.71, on training and validation data set, respectively. The success of our method can be appraised by the fact that, if a sequence of 1,000 amino acids is analyzed with our approach, 10 residues will be predicted as NAG‐interacting, out of which five are correct. Best models were incorporated in the standalone version and in the webserver available at https://webs.iiitd.edu.in/raghava/nagbinder/
Keywords:Binary profile  Machine learning techniques  N‐acetylglucosamine  NAG  PSSM profile
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号