首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conjugation reactions catalyzed by bifunctional proteins related to beta-oxidation in bile acid biosynthesis
Authors:Kurosawa T  Sato M  Nakano H  Fujiwara M  Murai T  Yoshimura T  Hashimoto T
Institution:Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Hokkaido, Japan. kurohsuh@hucc.hokudai.ac.jp
Abstract:The conjugation reactions of hydration and dehydrogenation catalyzed by the dehydratase and dehydrogenase activities of D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein (DBP) and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional protein (LBP) in the side chain degradation step of bile acid biosynthesis were investigated using chemically synthesized C27-bile acid CoA esters as substrates. The hydration catalyzed by DBP showed high diastereoselectivity for (24E)-3alpha,7alpha,12alpha-trihydroxy- and (24E)-3alpha,7alpha-dihydroxy-5beta-cholest-24-en-26-oyl CoA to give (24R,25R)-3alpha,7alpha,12alpha,24-tetrahydroxy- and (24R,25R)-3alpha,7alpha,24-trihydroxy-5beta-cholestan-26-oyl CoAs, respectively, and the dehydrogenation catalyzed by DBP also showed high stereospecificity for the above (24R,25R)-isomers to give 3alpha,7alpha,12alpha-trihydroxy- and 3alpha,7alpha-dihydroxy-24-oxo-5beta-cholestan-26-oyl CoAs, respectively. On the other hand, the dehydratase activity of LBP displayed a different diastereoselectivity producing the (24S,25S)-isomer, and dehydrogenase activity of LBP was stereospecific for the (24S,25R)-isomer to give the above 24-oxo-derivative. The hydration and dehydrogenation reactions catalyzed by DBP were effectively conjugated to convert (24E)-5beta-cholestenoyl CoA to 24-oxo-5beta-cholestanoyl CoA. However, the reactions catalyzed by LBP were not conjugated. These results indicate that DBP plays an important role in the biosynthesis of bile acid.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号