首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism for oscillatory assembly of microtubules
Authors:M Caplow  J Shanks
Affiliation:Department of Biochemistry, University of North Carolina, Chapel Hill 27599-7260.
Abstract:Dampened oscillations of microtubule assembly can accompany polymerization at high tubulin subunit concentrations. This presumably results from a synchronization of dynamic instability behavior, which generates a large population of rapidly disassembling microtubules, that liberate tubulin-GDP oligomers. Subunits in oligomers cannot assemble until they dissociate, to allow GDP-GTP exchange. To determine whether rapidly disassembling microtubules generate oligomers directly, we measured the rate of dilution-induced disassembly of tubulin-GDP microtubules and the rate of dissociation of GDP from the so-formed tubulin-GDP subunits. The rate of GDP dissociation from liberated subunits was found to correspond to that of tubulin-GDP subunits (t1/2 = 5 s), rather than tubulin-GDP oligomers. This indicates that tubulin-GDP subunits are released from microtubules undergoing rapid disassembly. Oligomers apparently form in a side reaction from the high concentration of tubulin-GDP subunits liberated from the synchronously disassembling microtubule population. The rate of subunit dissociation is 0.11 s-1 with oligomers formed by concentrating tubulin-GDP subunits and 0.045 s-1 with oligomers formed by cold-induced microtubule disassembly. This difference provides evidence that the conformation of tubulin-GDP subunits released from rapidly disassembling microtubules differs from tubulin-GDP subunits that were not recently in the microtubule lattice.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号