首页 | 本学科首页   官方微博 | 高级检索  
     


Bending-wave propagation by microtubules and flagella
Authors:Charles J. Brokaw
Abstract:The movement of an elastic filament in a viscous medium can be computed from the fourth-order nonlinear partial differential equation obtained by balancing bending moments at all points along the length of the filament. These bending moments result from active forces, elastic resistance to bending, and viscous resistance to movement through the medium. I have studied numerical solutions obtained for two situations of biological interest: For the movement of individual microtubules, the active force is generated by interaction between the microtubule and the substratum over which it is moving, and is directed along the axis of the microtubule. The computations can reproduce the gliding movement of unrestrained microtubules, and also the periodic bending and bend propagation seen when the leading end of the microtubule is restrained. No modulation of active force is required to generate bending waves. For the movement of flagella, the active forces are generated internally as sliding forces between adjacent members of a cylinder of nine microtubular doublets. Without some additional control assumptions, the forces will be balanced and no bending moments will be generated. The problem faced by investigators of flagellar motility is to determine the control mechanisms that operate to make the system asymmetric, so that active bending moments are generated. Computations with models in which the curvature of the flagellum modulates the active-force generators have indicated that this control specification is sufficient to generate oscillation and bend propagation, but is insufficient to completely determine the movement.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号