首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Improved Performance and Reliability of p‐i‐n Perovskite Solar Cells via Doped Metal Oxides
Authors:Achilleas Savva  Ignasi Burgués‐Ceballos  Stelios A Choulis
Institution:Molecular Electronics and Photonics Research Unit, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
Abstract:Perovskite photovoltaics (PVs) have attracted attention because of their excellent power conversion efficiency (PCE). Critical issues related to large‐area PV performance, reliability, and lifetime need to be addressed. Here, it is shown that doped metal oxides can provide ideal electron selectivity, improved reliability, and stability for perovskite PVs. This study reports p‐i‐n perovskite PVs with device areas ranging from 0.09 cm2 to 0.5 cm2 incorporating a thick aluminum‐doped zinc oxide (AZO) electron selective contact with hysteresis‐free PCE of over 13% and high fill factor values in the range of 80%. AZO provides suitable energy levels for carrier selectivity, neutralizes the presence of pinholes, and provides intimate interfaces. Devices using AZO exhibit an average PCE increase of over 20% compared with the devices without AZO and maintain the high PCE for the larger area devices reported. Furthermore, the device stability of p‐i‐n perovskite solar cells under the ISOS‐D‐1 is enhanced when AZO is used, and maintains 100% of the initial PCE for over 1000 h of exposure when AZO/Au is used as the top electrode. The results indicate the importance of doped metal oxides as carrier selective contacts to achieve reliable and high‐performance long‐lived large‐area perovskite solar cells.
Keywords:carrier selective contacts  doped metal oxides  flexible photovoltaic devices  perovskite solar cells  p‐i‐n perovskite photovoltaics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号