首页 | 本学科首页   官方微博 | 高级检索  
     


Slow Organic‐to‐Inorganic Sub‐Lattice Thermalization in Methylammonium Lead Halide Perovskites Observed by Ultrafast Photoluminescence
Authors:Angela Y. Chang  Yi‐Ju Cho  Kuan‐Chen Chen  Chang‐Wen Chen  Alper Kinaci  Benjamin T. Diroll  Michael J. Wagner  Maria K. Y. Chan  Hao‐Wu Lin  Richard D. Schaller
Affiliation:1. Department of Chemistry, Northwestern University, Evanston, IL, USA;2. Department of Materials Science and Engineering, National Tsing‐Hua University, Hsin Chu, Taiwan;3. Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, USA
Abstract:Carrier dynamics in methylammonium lead halide (CH3NH3PbI3–xClx) perovskite thin films, of differing crystal morphology, are examined as functions of temperature and excitation wavelength. At room temperature, long‐lived (>nanosecond) transient absorption signals indicate negligible carrier trapping. However, in measurements of ultrafast photoluminescence excited at 400 nm, a heretofore unexplained, large amplitude (50%–60%), 45 ps decay process is observed. This feature persists for temperatures down to the orthorhombic phase transition. Varying pump photon energy reveals that the fast, band‐edge photoluminescence (PL) decay only appears for excitation ≥2.38 eV (520 nm), with larger amplitudes for higher pump energies. Lower photon‐energy excitation yields slow dynamics consistent with negligible carrier trapping. Further, sub‐bandgap two‐photon pumping yields identical PL dynamics as direct absorption, signifying sensitivity to the total deposited energy and insensitivity to interfacial effects. Together with first principles electronic structure and ab initio molecular dynamics calculations, the results suggest the fast PL decay stems from excitation of high energy phonon modes associated with the organic sub‐lattice that temporarily enhance wavefunction overlap within the inorganic component owing to atomic displacement, thereby transiently changing the PL radiative rate during thermalization. Hence, the fast PL decay relates a characteristic organic‐to‐inorganic sub‐lattice equilibration timescale at optoelectronic‐relevant excitation energies.
Keywords:density functional theory  hybrid perovskite  transient absorption  transient photoluminescence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号