首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nanoscale Elastic Changes in 2D Ti3C2Tx (MXene) Pseudocapacitive Electrodes
Authors:Jeremy Come  Yu Xie  Michael Naguib  Stephen Jesse  Sergei V Kalinin  Yury Gogotsi  Paul R C Kent  Nina Balke
Institution:1. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA;2. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA;3. Department of Materials Science and Engineering and A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, USA;4. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Abstract:Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in situ characterization of their evolution has never been achieved at the nanoscale. It is reported here with in situ imaging, combined with density functional theory of the elastic changes of a 2D titanium carbide (Ti3C2Tx) based electrode in direction normal to the basal plane (electrode surface) during alkaline cation intercalation/extraction. 2D carbides, known as MXenes, are promising new materials for supercapacitors and various kinds of batteries, and understanding the coupling between their mechanical and electrochemical properties is therefore necessary. The results show a strong correlation between the cations content and the out‐of‐plane elastic modulus. This strategy enables identifying the preferential intercalation pathways within a single particle, which is important for understanding ionic transport in these materials.
Keywords:cation intercalation  atomic force microscopy  elastic modulus  MXene  electrode materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号