首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Probing functional perfection in substructures of ribonuclease T1: double combinatorial random mutagenesis involving Asn43, Asn44, and Glu46 in the guanine binding loop
Authors:Kumar K  Walz F G
Institution:Department of Chemistry, Kent State University, Kent, Ohio 44242, USA.
Abstract:Combinatorial random mutageneses involving either Asn43 with Asn44 (set 1) or Glu46 with an adjacent insertion (set 2) were undertaken to explore the functional perfection of the guanine recognition loop of ribonuclease T(1) (RNase T(1)). Four hundred unique recombinants were screened in each set for their ability to enhance enzyme catalysis of RNA cleavage. After a thorough selection procedure, only six variants were found that were either as active or more active than wild type which included substitutions of Asn43 by Gly, His, Leu, or Thr, an unplanned Tyr45Ser substitution and Glu46Pro with an adjacent Glu47 insertion. Asn43His-RNase T(1) has the same loop sequence as that for RNases Pb(1) and Fl(2). None of the most active mutants were single substitutions at Asn44 or double substitutions at Asn43 and Asn44. A total of 13 variants were purified, and these were subjected to kinetic analysis using RNA, GpC, and ApC as substrates. Modestly enhanced activities with GpC and RNA involved both k(cat) and K(M) effects. Mutants having low activity with GpC had proportionately even lower relative activity with RNA. Asn43Gly-RNase T(1) and all five of the purified mutants in set 2 exhibited similar values of k(cat)/K(M) for ApC which were the highest observed and about 10-fold that for wild type. The specificity ratio (k(cat)/K(M))(GpC)/(k(cat)/K(M))(ApC)] varied over 30 000-fold including a 10-fold increase Asn43His variant; mainly due to a low (k(cat)/K(M))(ApC)] and a 3000-fold decrease (Glu46Ser/(insert)Gly47 variant; mainly due to a low (k(cat)/K(M))(GpC)) as compared with wild type. It is interesting that k(cat) (GpC) for the Tyr45Ser variant was almost 4-fold greater than for wild type and that Pro46/(insert)Glu47 RNase T(1) is 70-fold more active than the permuted variant (insert)Pro47-RNase T(1) which has a conserved Glu46. In any event, the observation that only 6 out of 800 variants surveyed had wild-type activity supports the view that functional perfection of the guanine recognition loop of RNase T(1) has been achieved.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号