首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction and uncertainty in the analysis of gene expression profiles
Authors:Spang Rainer  Zuzan Harry  West Mike  Nevins Joseph  Blanchette Carrie  Marks Jeffrey R
Affiliation:Institute of Statistics and Decision Sciences, Duke University, Durham, NC, USA.
Abstract:We have developed a complete statistical model for the analysis of tumor specific gene expression profiles. The approach provides investigators with a global overview on large scale gene expression data, indicating aspects of the data that relate to tumor phenotype, but also summarizing the uncertainties inherent in classification of tumor types. We demonstrate the use of this method in the context of a gene expression profiling study of 27 human breast cancers. The study is aimed at defining molecular characteristics of tumors that reflect estrogen receptor tatus. In addition to good predictive performance with respect to pure classification of the expression profiles, the model also uncovers conflicts in the data with respect to the classification of some of the tumors, highlighting them as critical cases for which additional investigations are appropriate.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号