首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temperature-dependent perturbation of phospholipid bilayers by dimethylsulfoxide.
Authors:T J Anchordoguy  J F Carpenter  J H Crowe  L M Crowe
Institution:EPO Biology, University of Colorado, Boulder 80309-0334.
Abstract:Dimethylsulfoxide (DMSO) is known to protect isolated enzymes during freezing while destabilizing proteins at high temperatures. This apparent paradox is the subject of a review by Arakawa et al. ((1990) Cryobiology 27, 401-415), who present evidence for a temperature-dependent, hydrophobic interaction between DMSO and non-polar moieties of proteins. The present study investigates the interaction of DMSO with phospholipid bilayers. Phospholipid vesicles containing carboxyfluorescein were exposed to several concentrations of DMSO at various temperatures. Leakage rates increased with DMSO concentration and temperature. This effect was not reduced in the presence of solutes that have been shown to neutralize DMSO toxicity in tissues. The increased leakage rates correlate well with the increased partitioning of DMSO from water to octanol at higher temperatures. Additionally, reductions in the CH2 vibrations of the bilayer are also shown to depend on DMSO concentration and temperature. A similar reduction in CH2 vibrations was observed in solutions of octanol and DMSO, suggesting that this effect is not mediated through an interaction with water. Furthermore, investigation of sulfoxide vibrations indicate that DMSO is not hydrogen bonded to the alcohol moiety of octanol, and therefore the interaction between DMSO and octanol is most likely due to a hydrophobic association. These results are consistent with a destabilization of phospholipid membranes at higher temperatures due to a hydrophobic association between DMSO and the bilayer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号