首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Anchorage-independent growth of normal human mesothelial cells: A sensitive bioassay for EGF which discloses the absence of this factor in fetal calf serum
Authors:Paul J La Rocca  James G Rheinwald
Institution:(1) Division of Cell Growth and Regulation, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, 02115 Boston, MA;(2) Department of Physiology and Biophysics, Harvard Medical School, 44 Binney Street, 02115 Boston, MA
Abstract:Summary This laboratory recently reported that normal human mesothelial cells require epidermal growth factor (EGF) and hydrocortisone (HC), in addition to fetal calf serum and a complex defined medium component, in order to grow optimally in surface culture (9). We report here that this normal cell type also forms large colonies at high efficiency in semi-solid medium, but exhihits more stringent serum and EGF requirements for anchorage-independent than for surface growth. Mesothelial cells are unable to divide at all in semi-solid medium with added EGF or with less than 2% serum, whereas they grow slowly but progressively in surface culture under such conditions. In semi-solid medium containing 20% serum and HC, mesothelial cells are stimulated to divide by the addition of as little as 30 pg/ml purified EGF. Human urine or male mouse plasma could substitute for purified EGF, yielding growth commensurate with the levels of EGF in these biological fluids previously measured by others using radioreceptor and radioimmune assays. Thus growth of mesothelial cells in semi-solid medium can serve as a highly sensitive assay of EGF biological activity which is unaffected by the presence of serum proteins. In addition, our results demonstrate that fetal calf serum does not provide mitogenic levels of EGF to cultured cells, raising the question of the identity of plasma and serum mitogens. This work was supported by NIH grants RO1 AG02048 and RO1 CA26656 to James G. Rheinwald and by NIH postdoctoral fellowship F32 AG05303 to Paul J. La Rocca.
Keywords:EGF  mesothelial cells  anchorage-independent growth  human diploid
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号