首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land
Authors:Caputi Lorenzo  Malnoy Mickael  Goremykin Vadim  Nikiforova Svetlana  Martens Stefan
Institution:Fondazione Edmund Mach, Centro Ricerca e Innovazione, Department of Food Quality and Nutrition, Istituto Agrario San Michele all'Adige-IASMA, Via E. Mach 1, 38010 San Michele all'Adige-TN, Italy.
Abstract:For almost a decade, our knowledge on the organisation of the family 1 UDP‐glycosyltransferases (UGTs) has been limited to the model plant A. thaliana. The availability of other plant genomes represents an opportunity to obtain a broader view of the family in terms of evolution and organisation. Family 1 UGTs are known to glycosylate several classes of plant secondary metabolites. A phylogeny reconstruction study was performed to get an insight into the evolution of this multigene family during the adaptation of plants to life on land. The organisation of the UGTs in the different organisms was also investigated. More than 1500 putative UGTs were identified in 12 fully sequenced and assembled plant genomes based on the highly conserved PSPG motif. Analyses by maximum likelihood (ML) method were performed to reconstruct the phylogenetic relationships existing between the sequences. The results of this study clearly show that the UGT family expanded during the transition from algae to vascular plants and that in higher plants the clustering of UGTs into phylogenetic groups appears to be conserved, although gene loss and gene gain events seem to have occurred in certain lineages. Interestingly, two new phylogenetic groups, named O and P, that are not present in A. thaliana were discovered.
Keywords:glycosyltransferases  molecular evolution  phylogenetic analysis  plant genome  A  thaliana  PSPG motif
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号