首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD) from Helicobacter pylori strain P1
Authors:Fassbinder F  Kist M  Bereswill S
Institution:University of Freiburg, Institute of Medical Microbiology and Hygiene, Department of Microbiology, Freiburg, Germany.
Abstract:The functions of the riboflavin synthesis gene homologues ribA, ribBA, ribC, and ribD from Helicobacter pylori strain P1 were confirmed by complementation of defined Escherichia coli mutant strains. The H. pylori ribBA gene, which is similar to bifunctional ribBA genes of Gram-positive bacteria, fully complemented the ribB mutation and partially restored growth in a ribC mutant. However, ribBA did not complement the ribA mutation in E. coli, thus explaining the presence of the additional separate copy of the ribA gene in the H. pylori chromosome. In E. coli exclusively ribA conferred hemolytic activity and gave rise to production of molecules with fluorescence characteristics similar to flavins, as observed earlier. The E. coli hemolysin ClyA was not involved in causing the hemolytic phenotype. No riboflavin synthesis genes on plasmids conferred iron uptake functions to a siderophore-deficient mutant of E. coli. Marker exchange mutagenesis of the genes in H. pylori was not successful indicating that riboflavin synthesis is essential for basic metabolic functions of the gastric pathogen.
Keywords:Helicobacter pylori            Vitamin B2  Cofactor synthesis  NAD  Flavin adenine dinucleotide
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号