首页 | 本学科首页   官方微博 | 高级检索  
     


Two C-terminal ankyrin repeats form the minimal stable unit of the ankyrin repeat protein p18INK4c
Authors:Petr Sklenovský  Pavel Banáš  Michal Otyepka
Affiliation:(1) Department of Physical Chemistry and Center for Biomolecules and Complex Molecular Systems, Faculty of Science, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic
Abstract:Ankyrin repeat proteins (ARPs) appear to be abundant in organisms from all phyla, and play critical regulatory roles, mediating specific interactions with target biomolecules and thus ordering the sequence of events in diverse cellular processes. ARPs possess a non-globular scaffold consisting of repeating motifs named ankyrin (ANK) repeats, which stack on each other. The modular architecture of ARPs provides a new paradigm for understanding protein stability and folding mechanisms. In the present study, the stability of various C-terminal fragments of the ARP p18INK4c was investigated by all-atomic 450 ns molecular dynamics (MD) simulations in explicit water solvent. Only motifs with at least two ANK repeats made stable systems in the available timescale. All smaller fragments were unstable, readily losing their native fold and α-helical content. Since each non-terminal ANK repeat has two hydrophobic sides, we may hypothesize that at least one hydrophobic side must be fully covered and shielded from the water as a necessary, but not sufficient, condition to maintain ANK repeat stability. Consequently, at least two ANK repeats are required to make a stable ARP. MediaObjects/894_2008_300_Figa_HTML.gif Figure Structure of the p18INK4c protein (PDB entry 1IHB, chain B), which is a member of the cyclin-dependent kinase inhibitor (INK) tumor suppressor family with five ankyrin (ANK) repeat modules. The figure was generated by PyMol Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Keywords:Ankyrin repeat  p18INK4c   Minimal stable unit  Fragmentation  Molecular dynamics
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号