首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dietary selenium variation-induced oxidative stress modulates CDC2/cyclin B1 expression and apoptosis of germ cells in mice testis
Authors:Kaushal Naveen  Bansal Mohinder P
Institution:Department of Biophysics, Panjab University, Chandigarh 160014, India.
Abstract:Oxidative stress has been linked with apoptosis in germ cells and with male infertility. However, the molecular mechanism of oxidative-stress-mediated apoptosis in germ cells has not been clearly defined so far. Because of the involvement of CDC2 and cyclin B1 in cell cycle regulation and their plausible role in apoptosis, the present study aimed to investigate the possibility that selenium (Se)-induced oxidative-stress-mediated modulations of these cell cycle regulators cause DNA damage and apoptosis in germ cells. To create different Se status (deficient, adequate and excess), male Balb/c mice were fed yeast-based Se-deficient diet (Group I) and a deficient diet supplemented with Se as sodium selenite (0.2 and 1 ppm Se in Groups II and III, respectively) for a period of 8 weeks. After the completion of the diet feeding schedule, a significant decrease in Se levels and glutathione peroxidase activity was observed in the Se-deficient group (Group I), whereas the Se-excess group (Group III) demonstrated an increase in Se levels. Increased levels of lipid peroxidation were seen in both Groups I and III when compared to Group II, indicating oxidative stress. The mRNA and protein expressions of both CDC2 and cyclin B1 were found to be significantly decreased in Groups I and III. A decrease in the immunohistochemical localization of these proteins was also observed in spermatogenic cells. The mRNA expressions of apoptotic factors such as Bcl-2, Bax, caspase-3 and caspase-9 were found to be increased in Groups I and III. A decrease in CDC2 kinase activity was also seen in these groups. Increased apoptosis was observed in Group I and Group III animals by terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay indicating oxidative-stress-mediated DNA damage. These findings suggest the effect of Se-induced oxidative stress on the cell cycle regulators and apoptotic activity of germ cells, thus providing new dimensions to molecular mechanisms underlying male infertility.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号