首页 | 本学科首页   官方微博 | 高级检索  
     

人工智能算法与生态环境模型耦合研究进展
引用本文:胡羽聪,李娜,江燕,包鑫,李叙勇. 人工智能算法与生态环境模型耦合研究进展[J]. 应用生态学报, 2023, 34(1): 257-263. DOI: 10.13287/j.1001-9332.202301.019
作者姓名:胡羽聪  李娜  江燕  包鑫  李叙勇
作者单位:1.中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085;2.中国科学院大学, 北京 100049;3.中国灌溉排水发展中心, 北京 100054
基金项目:国家重点研发计划项目(2019YFB2102901, 2019YFB2102902)资助。
摘    要:人工智能算法在生态环境领域已有广泛应用,但在揭示自然科学现象规律时存在泛化能力不足、可解释性差等问题。为弥补这些不足,实现优势互补,将人工智能算法与具有物理机制的生态环境模型耦合研究已成为近些年快速发展的一种新型研究方法。本文从应用在生态环境领域的人工智能算法出发,概述了其分类和应用情况,重点梳理了人工智能算法与生态环境模型耦合研究的发展、现状及不足,提出了一个将人工智能与机理模型紧密耦合以重构机理过程的思路,分析了该网络部分参数的理论意义,提高可解释性和泛化能力的可行性,以及模拟机理过程运行的应用前景,并展望了人工智能算法与生态环境模型耦合研究的发展趋势。

关 键 词:人工智能算法  生态环境模型  耦合  重构机理  
收稿时间:2022-01-28

Research progress on coupling artificial intelligence and eco-environmental models
HU Yu-cong,LI Na,JIANG Yan,BAO Xin,LI Xu-yong. Research progress on coupling artificial intelligence and eco-environmental models[J]. The journal of applied ecology, 2023, 34(1): 257-263. DOI: 10.13287/j.1001-9332.202301.019
Authors:HU Yu-cong  LI Na  JIANG Yan  BAO Xin  LI Xu-yong
Affiliation:1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.China Irrigation and Drainage Development Center, Beijing 100054, China
Abstract:Artificial intelligence (AI) has been widely used in the eco-environment field, but with shortcomings in revealing the laws of natural science, such as insufficient generalization ability and poor interpretability. In order to overcome these shortages and tap into complementary advantages, coupling AI and eco-environmental models containing physical mechanism has been a new research method with fast development in recent years. We introduced the classifications of AI used in eco-environmental field, outlined its applications, and mainly illustrated the progresses, status and inadequacies for the coupling research. Based on all the summaries, we proposed a new coupling method of physical mechanism and AI for reconstructing mechanism processes, followed by analyses of theoretical significance of partial parameters, feasibility of better generalization and interpretability, as well as prospection of imitating physical mechanism. At the end of the review, we discussed the trend of the coupling method of AI and eco-environment models.
Keywords:artificial intelligence  eco-environmental model  coupling  reconstruction of mechanism.  
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号